各種分析

分 析 項 目	価 格	分 析 方 法	備考
《葉身分析一式》			
貯蔵性炭水化物 全糖 全審素 全室酸 カルグラウム カッシュカリカックウウカリカックカリカック・カリカリカカカカカカカカカカカカカカカカカカカカカカカカカ	10,000	近赤外分光法	芝生の刈りカスから各成分の含有率を測定 年次変動の確認及び肥料散布後の確認など、肥培管理のサポートに役立つ
病原菌検定	10,000	顕微鏡観察、培養	罹病芝の観察、培養により病気の原因を的確に判断
BF値	10,000	希釈平板法	バクテリアの数を糸状菌の数で割り算出。桁数が多ければ多いほど状態の良いグリ ーンといえる
画像解析	10,000		ソイルサンプラーで採取した芝の根を水で洗浄し、スキャナーで 2 次元の画像にすることで、ルートマット層や根の状態を視覚的にチェック出来る

【採取方法と量】

- ・葉身……両てのひら山盛り一杯 できれば、乾燥して郵送等してください
- ・病気……ホールカッターで病斑と健全部の境目が中央になるように
- ・画像解析…ソイルサンプラーで穴あけが中央になるようにし、ダンボール等で包み固定する
- ・BF値……ホールカッター1コ分(深さ3~5cm)で濡れたままの状態

分析	項目	価格	分 析 方 法	備
《土壌分	析一式》			
	pH 全窒素 有効態リン酸 リン酸 リン酸吸収係 置換性苦土 置換性が 置換性ソータ 塩基 塩類濃度 粒径分布	15,000		グリーンの土壌成分をさまざまな角度から詳細に分析することにより、土壌状態を 的確に把握することが出来る
рН	H ₂ O · KCI	1,600	ガラス電極法	健康状態を推測
全窒素	T - N	2,400	ケルダール法	窒素化合物全体のことで、いわゆるタンパク源であり、植物の生長(主に葉)を促す
有効態リン酸		3,000	モリブデン酸アンモニウム塩酸法	
リン酸吸収係数		3,000	バナドモリブデン酸法	リン酸を固定する力の尺度
置換性石灰	Ca0	2,400	EDTA法	作物が、利用・吸収できる陽イオン
置換性苦土	MgO	2,400	EDTA法	"
置換性加里	K ₂ O	2,400	原子吸光法	"
置換性ソーダ	Na ₂ O	2,400	原子吸光法	
塩基置換容量	CEC	3,000	シュレンベルガー法・フォルモール法	陽イオンを引き付ける力の尺度
可溶性マンガン	Mn	2,400	原子吸光法	人間で言うビタミンに当たり、不足すると、体調を崩した状態になる
可溶性鉄	Fe	2,400	原子吸光法	"
可溶性銅	Cu	2,400	原子吸光法	"
可溶性亜鉛	Zn	2,400	原子吸光法	"
塩類濃度	EC	2,000	電気伝導度計法	肥料分の判断に。濃度が高すぎると団粒構造が壊され、保水・通気・透水性が悪く、根腐れ等がおきやすい
粒径分布		3,000	キューンワグナー法	
透水性		10,000	定水位法	
三相分布		3,000	乾熱法	液相(15~25%)、気相(15~30%)、固相(45~65%)の割合を測定
比重	仮比重	2,000	乾熱法	
保水性	圃場容水量、最大容水量	3,300	乾熱法	

各種分析

分 析	項目	価 格	分 析 方 法	備考
《水質分	分析一式》			
	pH 塩類濃度 カルシウム マグネシウム カリウム ナトリウム	10,000		芝草に散水可能かどうかという視点で結果を考察
рН		1,600	ガラス電極法	
塩類濃度	EC	1,600	電気伝導度計法	
全窒素	T - N	2,600	ケルダール法	
全リン	T - P	3,000	バナドモリブデン酸法	
カルシウム	CaO	3,000	原子吸光法	
マグネシウム	MgO	3,000	原子吸光法	
カリウム	K ₂ O	3,000	原子吸光法	
ナトリウム	Na ₂ O	3,000	原子吸光法	
マンガン	Mn	3,000	原子吸光法	
鉄	Fe	3,000	原子吸光法	
銅	Cu	3,000	原子吸光法	
亜鉛	Zn	3,000	原子吸光法	

【採取方法と量】

- ・土壌……ホールカッター1コ分(深さ5~10cm)ただし、透水性がある場合、土のう袋半分ぐらい
- ・水質……… 2Lペットボトル1本 口元までいっぱい入れる